The 8bit JControl Font Definition Format (JCFD)

```xml
<font> = <header><fontdata>
<header> = "JCFD"<revision><size><extcharsoffset>
<revision> = 0x02 (16bit)
<size> = font height in pixels (16bit)
<extcharsoffset> = offset from start of ASCII-Chars to start of extended chars
(increment from "current" address, not from start of file) (16bit)

<fontdata> = <asciichars><extchars><termination>
<asciichars> = <binary_tree> including 128 standard 7bit-ascii chars
<extchars> = {<unicode><chardata>}+
<termination> = 0x0000 (16bit) indicates the end of the font data

<binary_tree> = <rightsubtree_offset><left_subtree><right_subtree>
<rightsubtree_offset> = index (position) of the root of the right subtree
<left_subtree> = if the height of the tree is smaller than 6 <binary_tree> else <chardata>
<right_subtree> = if the height of the tree is smaller than 6 <binary_tree> else <chardata>

<unicode> = the unicode for this character (16bit)
<chardata> = <width><pixeldata>

<width> = the character width in pixels (8bit)
<pixeldata> = {<byte_value_row>}+
<byte_value_row> = {<byte_value>}*<width>
<byte_value> = 8 pixels are stored in a byte, one upon the other, LSB first (8bit)

Thus, image pixeldata is always stored as a multiple of eight*<width>.

Example: font size = 9, character width = 7

```

```

LSB

.XXX..  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
```

MSB

```
F8 FC 22 22 22 FC F8
```

```
LSB

.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
.XXX..X  
```

MSB

```
01 01 00 00 00 01 01
```

The pixel data for this character would be stored this way:

```
01 01 00 00 00 01 01
```

© Domologic Home Automation GmbH. All Rights Reserved.
The 16-Bit JControl Font Definition Format (JCFD)

\[
\text{\begin{verbatim}
 = <header><lookuptable><fontdata>

<header> = "JCFD"<revision><size><reserved><offset><chars_num><special_chars_num>

<revision> = 0x01 (16-Bit)
<size> = font height in pixels (16-Bit)
<reserved> = 0x00 (16-Bit)
<offset> = 0x08 (16-Bit)
<chars_num> = 0x80 (16-Bit) number of normal characters, this should always be 128
<special_chars_num> = number of special chars that come after 0x80, like ä,ö,ü. (16-Bit)

The lookup table includes the width and the start index for every character in this font.

<lookuptable> = <chars>[<special_chars>]

<chars> = \{ <width><index> \}+ (<chars_num> times)
<special_chars> = \{ <unicode><width><index> \}+ (<special_chars_num> times)

<width> = the character width in pixels (16-Bit)
<index> = the start index for the characters pixel data (16-Bit)
<unicode> = the unicode for this character (16-Bit)

<fontdata> = \{ <pixel_data> \}+

<pixel_data> = \{ <letter_column> \}+ (<width> times)
<letter_column> = \{ <short_value> \}+ (if <size> is more than 16, more shorts are needed)

<short_value> = pixels are stored in a short, one upon the other, LSB first (16-Bit each)

Example: font size = 20, character width = 13

```

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
The pixel data for this character would be stored this way:

```
80 00 00 01 0f 00 00 01 7c 00 00 00 1f 00 00 00 13e0 1078 1008 1078 13e0 1f00 7c00 f000 8000
13 e0 00 00 10 78 00 00 10 08 00 00 10 78 00 00
13 e0 00 00 1f 00 00 00 7c 00 00 00 f0 00 00 01
80 00 00 01
```